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Abstract
A one-dimensional Fibonacci chain is used to model vibrational mode
broadening in icosahedral quasicrystals (i-QCs). All calculations are performed
self-consistently for various finite size approximants at temperatures higher than
the Debye temperature, TD. This approach is extended to three-dimensional
systems as well. It is shown that vibrational spectra depend crucially on the
Fibonacci chain mass ratio m. For m = 3, which roughly mimics AlPdMn
i-QC, there are three almost dispersionless optic modes separated from the
acoustic mode by three large gaps, and for m = 1/3, which mimics ZnMgY
i-QC, there is one dispersionless optic mode and one acoustic mode. For
the first time we provide a qualitative model which predicts experimentally
observed phonon spectrum broadening of i-QC. It is shown that three wave
broadening for both one-dimensional and three-dimensional Fibonacci i-QCs
is the leading mechanism of spectrum broadening. For the intermediate range
of mode coupling constants, it scales with the mode frequency ω as c1ω + c2ω

2

(where c1 and c2 are some numerical constants). For smaller values of the
coupling constant, phonon broadening is proportional to ω3. We conclude that
for a system with a non-simple elementary cell, vibrational spectrum broadening
is always larger than for a system with a primitive cell (provided all other
characteristics are the same).

1. Introduction

Extensive experimental and theoretical work on quasi-periodic systems, i.e., materials which
exhibit non-periodic long-range order, has revealed interesting new properties which are not
possible either in periodic or in disordered systems (see for example, review articles [1–3],
and references therein). One of the remarkable and unexplained features of QCs is the
apparent conflict between the high structure quality of these materials and their vibrational
excitations [4–7], which are rather reminiscent of those for disordered materials [8, 9].
Although there is a considerable literature discussing vibrational eigenmodes and related
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properties of QCs, and a number of numerical calculations have been published over the
last 20 years, there is still a clear need for a simple theoretical model with predictions
which can be directly tested experimentally. For instance, results of exact diagonalization
of dynamical matrices at high symmetry points of the small Brillouin zone for corresponding
QC approximants (see for example [10],and also [11] for decagonal QCs with two-dimensional
quasi-periodicity) lead to very rich density of vibrational states including many different modes.
However, there is still very limited agreement between these theoretical studies (usually valid
at T = 0) and experiments [4, 5, 3, 6, 7], performed mainly at room temperature and above.
In part this frustrating situation is just due to the lack of a qualitative model of the vibrations
in QCs, and the main goal of this paper is geared towards the building of such a simple model.
Our aim in this paper is based on the fact that many robust room-temperature features of the
vibrational modes in QCs, experimentally testable by neutron methods, are not sensitive to the
more delicate aspects of quasi-periodic systems,such as the hierarchical nature of gaps [10–13],
or critical multifractal character of the states [14–16]. Aiming to rationalize published room-
temperature inelastic scattering data, we propose a coarse-grained model description of QC
vibrational mode broadening based on consideration of finite size approximants.

One comment is necessary here before proceeding. While ideal crystal mode broadening
is an intrinsically anharmonic phenomenon, the mode eigenfrequency can be accurately
determined in the harmonic approximation. In contrast, even in the ideal QCs, where
vibrational modes are in critical states (multifractal modes [11]), there is harmonic broadening.
However, this natural broadening at T > TD is small, and dominant contribution is given
by more robust anharmonic three-wave (i.e., involving the smallest number of excitations)
broadening. The three-wave broadening can be quite accurately analysed in the framework of
finite size approximant approach.

Our motivations for this paper are twofold. First is a simple observation that a disallowed
in conventional crystalline materials fifth-order rotational symmetry of i-QCs determines the
unique golden ratio (

√
5 − 1)/2 of incommensurate length scales that defines the structure of

all i-QCs. As we will show, many robust and experimentally testable features of the excitation
spectra in i-QCs are sensitive to mainly this specific feature of the structure. Second, for the
first time we provide a systematic procedure for handling vibrational mode broadening in QCs.
To our knowledge such analysis of the eigenmode broadening in QCs has not been carried out
thus far. Furthermore, although the broadening is often considered as a nuisance, it provides
valuable information on QC physical properties and eigenmode structure.

The simplest model structure constructed by the golden ratio is the one-dimensional (1D)
Fibonacci chain. Our aim is not to claim that all results we found for the Fibonacci 1D model
necessarily hold for real 3D i-QC materials. Note, however, that studies of low-dimensional
systems such as 1D Fibonacci chains are interesting for applications in their own right, and
when properly interpreted and treated the 1D model yields quite reasonable values for a variety
of measured quantities. Moreover, our calculations can be performed self-consistently not only
in one dimension but also can be generalized for 3D QCs. We study the model within the regular
expansion over the parameter ε = 1 − 1/m, assuming formally that ε � 1, where m is the
mass ratio for an effective binary QC (see its definition below in section 2). Of course our
simple model is only a zero approximation which may not have exact quantitative results but
can lead to correct predictions of the shapes of the dispersion laws.

Our paper is organized as follows. In section 2 we describe our model and calculate its
vibrational spectrum. In section 3 we compute the eigenfunctions, and in section 4 we find the
mode broadening due to anharmonic three-wave coupling. Finally we review and discuss our
results in section 5. In two appendices we collect some more specialized technical material
required for the calculations of phonon line broadening. Anharmonic third-order processes



Three-wave vibrational mode broadening for Fibonacci one-dimensional quasicrystals 6851

for the five-particle approximant to the infinite Fibonacci chain are presented in appendix A.
The main problem to treat theoretically mode broadening in 3D or 2D systems is that in a
QC there is no well-defined Brillouin zone [12, 13]. Luckily, for finite-temperature three-
wave broadening, the integrals entering the expressions for the broadening are determined by
a relatively broad range of wavevectors, not only in the vicinity of the boundary q0 of the
pseudo-Brillouin zone. We perform this calculation of the three-wave phonon broadening
in the isotropic 3D system with q-space limited by the sphere |q| = q0, (which is a good
approximation for highly symmetric elastic properties of i-QCs [17, 18]), and the results are
presented in appendix B. A more realistic model will not affect our conclusions much, and
transparency of treatment is worth a simplification. Those readers who are not very interested
in mathematical derivations can skip these appendices and find all essential physical results in
the main text of the paper.

2. Fibonacci model

As is well known, a regular periodic 1D lattice can be generated from one basic unit cell by
simple translation. For the ideal periodic system the solution of the equation of motion is
wavelike and the vibrational spectrum forms one or more vibrational bands. The density of
state is singular near these band edges. In the opposite limit of the totally disordered lattice,
the wavefunctions exhibit localization behaviour, and one has only a discrete spectrum. The
quasi-periodic lattices we are interested in this paper are intermediate in this sense between
ideally periodic and totally disordered systems. To generate a 1D quasi-periodic system one
has to apply a more general procedure. One popular example, simple, albeit providing a good
physical model for several alloys, is the so-called Fibonacci inflation rule. We are constructing
the chain from particles with masses 1 and m starting from a particle mass 1 as seed and
following the rule, specified by two numbers 1 and m in the sequence

1 → 1, m and m → 1.

This process gives successively

(1), (1, m), (1, m, 1), (1, m, 1, 1, m), . . . , (2.1)

and so forth such that the ratio (number of m)/(number of 1) approaches the golden mean value
σ ≡ (

√
5 − 1)/2 � 0.62 (the same as for i-QCs) in the limit of long sequences. If we start

from the particle with the mass m, the inflation rule symmetric to (2.1) can be used to generate
a Fibonacci chain where the roles of majority and minority basis are exchanged.

To determine the phonon spectrum of the Fibonacci chain we have to solve the dynamic
equation for every atom (ui is the displacement of the i th atom):

mi
d2ui

dt2
= 2ui − ui−1 − ui+1. (2.2)

Here and below we employ units with elastic moduli equal to unity. Of course it is impossible to
solve (2.2) analytically for an arbitrary chain,with more than four particles, therefore numerical
methods should be used to investigate the system.

The computations can be performed in many ways. For example one can find the
vibrational spectrum using the standard transfer matrix formalism [19, 20]. However,
predominantly aiming to analyse mode broadening, we will use here another approach that
seems to be more appropriate for our purposes. First of all it is more convenient instead of the
infinite Fibonacci chain to study the finite chain of length N with zero boundary conditions
for the displacements u(N) = u(0) = 0, and to have the spectrum for the infinite chain, the
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results should be computed in the limit N → ∞. For a conventional 1D crystal, i.e., m = 1,
we easily obtain the well-known spectrum

ω(n) = 2 sin(2πn/N). (2.3)

In the long-wavelength limit, ω → 0, the details of the quasi-periodic structure do not play a
significant role for vibrational spectra (unlike electronic spectra), and therefore we get in this
limit the same spectrum (2.3). Evidently this is not the case for finite ω and m �= 1.

To be more specific and in contact with real i-QCs, note that almost all known i-QCs
are three-component alloys, for example, Al27

68Pd106
21 Mn55

11, Zn65
60Mg24

31Y89
9 , where superscripts

indicate the mass number of the element and subscripts show the atomic concentration of
the element in the alloy. Unfortunately with the Fibonacci chain we can mimic simply only
two-component alloys. However, luckily the above-mentioned i-QC alloys roughly contain
one light component and two heavy components, and for both i-QCs we have a mass ratio
between the average heavy and the light component about 1:3.3 at the composition 68:32 for
AlPdMn, and a mass ratio 1:2.8 at the composition 31:69 for ZnMgY. We conclude that the
composition in both cases is not very different from the golden ratio; therefore, the Fibonacci
chain approximation at least in this respect might serve quite reasonably.

To have a nontrivial solution for the particle displacements ui , the eigenmode frequency
ω must satisfy the eigenvalue equation. The equation, for example, in the transfer matrix
technique, is the condition that the determinant of the product of N transfer matrices should
be zero. This allows us to find the phonon spectrum of the Fibonacci chain easily (see
e.g. [20, 19]). The spectrum has gaps which may be labelled by the so-called Bloch index
κs = (1/2)sσ(mod.1) (σ is the golden mean ratio) and the size of the gaps decreases roughly
with increasing s; for small energies, the gap size for phonons tends to zero faster than
ω [10, 11, 17, 18]. The model exhibits characteristics of both regular periodic and disordered
systems. In the low-frequency region, the system behaves as a regular periodic crystal (and the
vibrational eigenfunctions appear extended); in the high-frequency region, there is no unique
behaviour for the eigenfunctions, and the spectrum shows many gaps. However, the exact
solution is, so to speak, too exact for our purposes, and contains too many subtle details of the
model, and all branches of excitations simultaneously, while experimentally observed spectra
measured at room temperature are much poorer, and it is not clear whether it is possible at all
to observe or to test experimentally these theoretically predicted features of the spectra and
somehow to find their characteristics. For i-QCs AlPdMn and ZnMgY, for which detailed
studies have been carried out [4, 5, 3, 6, 7], vibrational excitation spectra can be separated
into two well-defined regimes: the acoustic regime for frequencies smaller than 6–8 meV, and,
for larger frequencies, a regime in which the dynamical response is characterized by a broad
band of dispersionless optic-like modes. The optic-like spectrum generally consists of three or
four broad bands (the width is of the order of few meV), and no any gap opening is observed.
Therefore, aiming to understand underlying basic physics and to model even qualitatively
observed dependences, one should not refine the model to include some additional mechanisms
and details, but on the contrary, one has to coarse grain the model, to have a benchmark to
compare theoretical predictions and experimental data.

Of course real i-QCs are not 1D Fibonacci chains. However, the 1D and 3D problems
share a common mathematical foundation based on the golden mean ratio σ : both systems
can be obtained by a projection method from a higher-dimensional space (2D square lattice for
the Fibonacci model [21]), and it is not surprising that they have common robust and generic
universal properties. As is the case in related electronic problems [22, 23], we expect the
qualitative features of the spectra will carry over to 2D and 3D cases, and similar results hold
for any irrationalσ . Moreover, finite-temperature phonon line broadening, our main concern in
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Figure 1. Spectrum for the Fibonacci chain with 55 particles in the elementary cell at zero
displacement boundary conditions and for the mass ratio 1:3.

this paper, is an even more robust phenomenon in QCs than the spectrum itself. Indeed although
mathematically in QCs we have to deal with infinitely many density modulation harmonics,
filling the reciprocal space densely, most of these harmonics have very small amplitudes, and
therefore only a few main harmonics taken into account in a finite size approximant dominate
this kind of broadening. In our work we are mainly concerned with 1D Fibonacci chains;
however, the aforesaid qualitative arguments also hold for 3D QCs (see appendix B where we
have presented the generalization of our approach to 3D systems).

Let us recapitulate the results of our analysis of the 1D Fibonacci chain vibrational modes.
The spectrum of the eigenmodes for 55 particles in the elementary cell shown in figure 1 was
obtained for zero displacement boundary conditions and for the mass ratio 1:3. Evidently one
can distinguish one acoustic branch and optical branches. Qualitatively the same features of
the spectrum occur also for 233 or 1000 particles. Let us first consider the case when the mass
ratio is about 1:3 and the composition is about 38:62, which can mimic i-QC AlPdMn. By a
simple coarse-grained inspection of the calculation results we find that in this case we have
three optical modes with rather weak dispersion, one acoustic mode and one quasi-optical
mode next to the acoustic one. The gap between the acoustic branch and the first quasi-optical
mode is much smaller than the other three gaps (cf with the exact numerical results [10, 11], and
phenomenological analysis [17, 18]). Analogously for the composition 62:38, the spectrum
has only two branches, one acoustic and one optic mode; the latter one is almost dispersionless
(figure 2).

The zero boundary displacement conditions are widely used in the literature; see e.g. [20].
Such an approach is adequate if one determines the spectrum; however, the method is not
suitable for the anharmonic three-wave mode broadening calculations. For example, in the
limit m = 1, the eigenfunctions are simply sin-functions and the mean product of any three
sin functions is always zero. For m �= 1 this product is not zero anymore, but it is very small.
Thus to analyse anharmonic contributions for the Fibonacci chain one must use a different
approach.
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Figure 2. Spectrum of the Fibonacci sequence for mass ratio 3:1 (all other conditions and
parameters are the same as in figure 1).

We can take some finite number (for example 5, which is the Fibonacci number) of the
particles in the elementary cell and impose non-zero periodic boundary conditions, requiring
that the corresponding quasi-momentum varies in the first Brillouin zone. Luckily it turns out
that the spectrum calculated in this simple model in the harmonic approximation resembles the
spectrum obtained by the previous method, although both spectra are expressed in different
variables. Indeed, in the former approach the spectrum consists of discrete points and every
mode can be uniquely characterized by an eigennumber, coinciding with the number of nodes
of the eigenfunction [20], while in the latter approach the quasi-momentum plays the role of a
wavevector which strictly speaking is undefined in the previous approach since in the Fibonacci
model there is no periodicity and the Bloch states.

Eventually we have five modes (eigenfrequencies) which can be represented as the
functions of the quasi-momentum. The fact that both spectra (i.e., those found for zero and
non-zero boundary displacements) are close (see figure 3) is not an accidental coincidence.
It is based on a natural coarse-grained generalization of the notion of wavevectors for the
quasi-periodic systems. Further, we will show in the next section that in the limit of small
frequencies the eigenfunctions of the Fibonacci chain vibrational spectrum are practically
indistinguishable from Bloch-like waves. Thus one should expect that the quasi-momenta are
reminiscent of the mode numbers. A similar behaviour is obtained for the next approximant
in the series. As we proceed to the higher-order approximants, new gaps progressively appear
in the spectrum, showing a hierarchical scaling structure. However, all coarse-grained global
features of the spectrum remain the same as for very short approximants; in particular, the
acoustic and optical modes we found above are very robust to the progressive fragmentation
of the spectrum.

3. Eigenfunctions

For periodic systems, Bloch’s theorem may be applied, and the solutions of (2.2) are
propagating waves. In contrast, if the lattice is disordered, the eigenfunctions are localized,
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Figure 3. Comparison of the eigenspectra computed with zero displacement boundary conditions
for the Fibonacci chain with 55 particles in the elementary cell (points) and with periodic boundary
conditions for 5 particles in the elementary cell (solid line). The mass ratio is 1:3 for both cases;
along the horizontal axis we put for the former case—mode number, and for the latter case—rescaled
quasi-momentum.

and the spectrum is a discrete set of levels. Common sense suggests that since the Fibonacci
chain is intermediate between periodic and disordered systems, it is expected to show both
characteristics. Let us first consider the eigenfunctions for a discrete point-like spectrum (i.e.,
the eigenfrequency as the functions of the mode numbers). For small eigenfrequencies the
eigenfunctions are similar to Bloch-like periodic functions. For the particular case of zero
boundary conditions these eigenfunctions can be written as sin(πnx/L). Near the gaps the
eigenfunctions are represented as certain linear combinations of the periodic functions, i.e.,
the wavepackets. The spectral width of any wavepacket is proportional to the value of the
gap. The broadest eigenfunctions are at the boundaries of the gaps, and the values of the
eigenfrequencies at the gaps are the corresponding Fibonacci numbers. We illustrate some
features of the eigenfunctions in figure 4 where we present Fourier transforms of 5 typical
eigenfunctions for a chain with 55 particles in the elementary cell. From this simple figure we
conclude that (as it was already noted above) for small eigennumbers the eigenfunctions are
not very different from periodic Bloch-like ones; however, near the gaps the eigenfunctions
strongly deviate from the Bloch solutions and they describe localized or intermediate (critical)
states.

To further clarify this situation a few remarks are in order.

• Since the eigenfunctions are not Bloch-like periodic ones, in the thermodynamic limit
N → ∞ there is no quasi-momentum conservation law.

• The eigenfunctions near large gaps have quite broad widths in reciprocal space; the spectral
distributions of the neighbouring eigenfunctions are strongly overlapped. Having in mind
neutron measurements this can lead to the situation when some phonon branches disappear
at certain k-values and the next branch can appear at the lower quasi-momentum value.

• In all published inelastic single grain neutron scattering experiments [4–7], the predicted
gaps in the vibrational spectra have not been detected. One can attribute this failure to
the mode broadening, which can be larger than the corresponding gaps. The natural (i.e.,
harmonic) broadening, related to the fact that the calculated eigenfunctions have a finite
width, is small and cannot close the big gaps between the optical modes. However, this
natural broadening is predominant only at T = 0. At room temperature where inelastic
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Figure 4. Fourier transforms of eigenfunctions with mode numbers 5, 15, 21, 34 and 43 for the
zero displacement boundary conditions (the mass ratio is 1:3).

neutron scattering data are available, one has to include the other broadening mechanisms,
and the most relevant and robust one is associated with three-phonon interactions [24].
A more realistic model with higher-order approximants will not affect our qualitative
conclusions.

4. Three wave broadening

As was shown in the previous section, even five particles ordered as 1, m, 1, 1, m give the
phonon spectrum qualitatively and semi-quantitatively quite close to the spectrum of the large
Fibonacci chain. Evidently, for the five particles in the elementary cell system, one has five
branches of the excitations: one acoustic branch (1), one optical mode (2) with non-zero
dispersion close to the acoustical mode, and three optical almost dispersionless modes (3, 4,
5). For the mass ratio m = 3 the straightforward analysis of the spectrum (one has to compare
merely the frequencies and wavevectors for the corresponding modes entering the processes)
leads to the following anharmonic three-phonon processes satisfying energy and momentum
conservation laws:

5 ↔ 4 + 1; 5 ↔ 3 + 2; 4 ↔ 3 + 1; 3 ↔ 2 + 2; 2 ↔ 1 + 1.

Here double arrows stand for the processes of decay and fusion of the corresponding excitation
branches, for example, 2 ↔ 1 + 1 means the account of the decay of the phonon from the
second branch to two phonons from the acoustic branch and the inverse process of fusion.
Actually only some parts of the corresponding branches can participate in these three-phonon
interactions. Indeed, the processes with two phonons from the dispersionless optical modes
and one phonon from the acoustic or from the first optical mode are allowed only for the small k
of the latter mode. All other processes between such phonons are forbidden. Thus we conclude
that phonons with small wavevectors do not contribute to these three-phonon processes and,
therefore, such phonons have no broadening at all. This observation conforms with known
results of inelastic neutron scattering measurements close to the strong Bragg peaks, which
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show that there is characteristic wavevector q1c of the order of (0.3 − 0.5) Å−1, such that only
for q > q1c do the sound modes exhibit broadening [4–7].

4.1. Basic model

Just to illustrate our calculation scheme, let us first consider the elementary cell with two atoms,
1 and m. The allowed three-wave processes depend strongly on the value of m. For m = 3 the
only possible anharmonic process is the decay of the optical phonon with k = 0 and ω = ω0

into the two phonons with ω = ω0/2. For smaller m there is a finite k region within the optical
mode where the decay is allowed. To study the three-wave phenomena quantitatively one has
to start with the vibrational Hamiltonian of the system including third-order anharmonic terms.
The Hamiltonian can be written as

H =
∑

s

∫
dk

(
a∗

s (k, t)ωs(k)as(k, t) +
∑

s1,s2

∫
dk1V (a∗

s (k, t)a∗
s1
(k1, t)as2(k + k1, t) + c.c.)

)
.

(4.1)

Here a∗
s , as are creation or annihilation operators of the corresponding phonons (see, e.g., [24]

for more details), V is the three-wave coupling potential, the integration is performed over
the first Brillouin zone, c.c. means the complex conjugated contribution, and the summation is
performed over all branches of the phonon spectrum. For the simplest model with two particles
in the elementary cell, these are one acoustic and one optical branch.

We calculate the first anharmonic corrections to the phonon spectrum. Since the
expansion in the Hamiltonian (4.1) is over the gradients of the atomic displacements, the triple
phonon interaction vertex V can be presented as V = λ

√
ωω1ω2. Indeed the creation and

annihilation operators a∗
s , as entering (4.1) expressed in terms of atomic displacements contain

normalization coefficients ∝√
ω, where ω is the frequency of the corresponding mode. The

interaction vertex λ has also some smooth dependence on the wavevectors [24] which,however,
can be found only numerically. Therefore, to illustrate the essential physics by a simple picture,
in the paper we neglect this dependence, and in what follows only the dimensionless anharmonic
coupling constant g = T λ2 will be used (T is temperature).

According to the general principles of quantum statistical physics [24], the probability of
a phonon decay, i.e., the vibrational mode broadening, can be calculated self-consistently from
the Hamiltonian (4.1). The mode widths γ1,2 are determined by the following Born integral
equations:

γ1(k, ω1) = gω1(k)

∫
dk ′ (ω2(k + k ′) − ω1(k ′))(γ1(k ′) + γ2(k + k ′))

(ω1(k) + ω1(k ′) − ω2(k + k ′))2 + (γ1(k ′) + γ2(k + k ′))2
,

γ2(k, ω2) = gω2(k)

∫
dk ′ (ω1(k ′) + ω1(k − k ′))(γ1(k ′) + γ1(k − k ′))/2

(ω2(k) − ω1(k ′) − ω1(k − k ′))2 + (γ1(k ′) + γ1(k − k ′))2
.

(4.2)

Here subscripts 1 and 2 label acoustic and optic mode respectively, and the (4.2) are the integral
equations to calculate self-consistently the mode broadening γ1,2 provided the mode harmonic
dispersion laws ω1,2 are known. Note also that the system of equations (4.2) is not symmetric
with respect to 1 ↔ 2 exchange, as it should be, since there is not any specific symmetry
relation between acoustic and optic modes. Our main concern here is the case where the
phonon broadening is rather large, therefore the thermal phonon excitations giving dominate
contributions into the broadening should be thermally occupied, i.e., T � TD (TD is Debye
temperature), as is the case in the experimental inelastic neutron scattering investigations [5–7].
In the condition T � TD we replace the Bose energy level occupation factor (exp(h̄ω/T )−1)−1

by the Boltzmann distribution function T/h̄ω in the high-temperature limit. The solutions to
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Figure 5. Phonon broadening calculated self-consistently from (4.2) (the mass ratio is 1:2.81 and
the three-wave interaction vertex g = 0.05).

these equations can be easily found numerically, and we present the results in figure 5. One
might think that equations (4.2) do not contain any QC-specific feature of the system, but this
is only partially true. In fact the mode broadening (4.2) is determined by the key QC property,
namely, a finite band of almost dispersionless optic modes interacting with the acoustic phonon.
On the same footing the aforesaid statement is applied in our approach to any system with a
non-simple unit cell. Indeed the low-lying optical modes from approximant crystals might be
practically indistinguishable from quasi-local modes. At a given mass ratio m the broadening
depends on the mode coupling parameter g, i.e., it is non-universal. It is also worth noting quite
peculiar behaviour for the optical mode broadening decreasing for k > 0.5. The physics behind
this can be rationalized as follows. For a given mass ratio about 2.8 the conservation laws
prohibit three-wave interactions of the type 1 + 1 ↔ 2 for optical phonons with wavevectors
k > 0.5. This broadening reduction phenomenon is even more pronounced for the smaller
coupling constant, as is demonstrated below in figure 7.

Figure 6 illustrates the three-wave broadening for a relatively large anharmonic coupling,
g = 0.05. The results in this strong coupling case can be fitted by an ω3 law. For a
small coupling constant the broadening law is quite different, as we show in figure 7, where
g = 0.005. In both cases the mass ratio is 1:2.81, which mimics the two kinds of i-QC
we described above. Figures 6 and 7 manifest clearly that ω3 dependence does not hold for
small anharmonic coupling, and besides the figures show the difference between the regions
of parameters corresponding to forbidden and allowed three-wave processes. Note also, that
the three-wave anharmonic coupling at length scales relevant in (4.2) may be different from
anharmonic contributions measured by macroscopic methods sensitive to anharmonic effects,
for example, linear thermal expansivity, excess (in comparison to Debye law) specific heat,
and various Grüneisen parameters [25, 26], or thermal conductivity [27, 28].

We have already shown in section 2 that the main structure of the vibration spectrum
for quasi-periodic chains can be obtained in practice by considering very short approximants
to infinite chains. For the Fibonacci chain, the reasonable size approximant contains five
particles in the elementary cell, which is with our choice of masses (m, 1, m, m, 1). Note that
the same statement is true for electronic spectra [22, 23] as well. Although the generalization
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Figure 6. Acoustic phonon broadening as a function of ω (the solid line is the function 0.3ω3; the
parameters are the same as in figure 5).

Figure 7. Phonon broadening calculated self-consistently from (4.2) (the mass ratio is 1:2.81 and
the three-wave interaction vertex g = 0.005).

of the above analysis and results for two particles in the elementary cell to the unit cells with
five atoms is conceptually straightforward, it deserves some precaution, as it implies tedious
and bulky calculations, which could be done analytically only under certain rather restrictive
approximations. Appendix A to the paper contains basic methodical details and equations
necessary for these calculations, and besides it gives a way to construct a regular method for
calculating higher-order perturbative corrections. In figure 8 we present the results of this
analysis for the five-atom elementary cell. Only the main three-wave processes 1 + 1 ↔ 2,
2 + 2 ↔ 3, 1 + 3 ↔ 4, 1 + 4 ↔ 5, 2 + 3 ↔ 5 are taken into account at the computation, and
besides, for the sake of simplicity and having in mind published inelastic neutron scattering



6860 E I Kats and A R Muratov

Figure 8. Self-consistent solution of equations (A.1) for the mass ratio 1:2.81 and parameter
g = 0.005. Solid lines in this figure for k = 0 are branches with numbers 1, 2, 3, 4, 5. The width
of the lowest acoustic mode tends to zero at k → 0; the widths for the higher energy branches
3, 4, 5 are of the same order of magnitude.

experimental data [4, 5, 3, 6, 7], all in the range above the Debye temperature, we assume the
Boltzmann statistics of the vibrational excitations.

Figure 8 shows that the width of the acoustic branch tends to zero for small wavevectors,
and that the higher energy mode broadening (3, 4, 5) is in the same range of magnitude (of
the order of 0.15 in our dimensionless units). Note that characteristic inter-mode spacing (i.e.,
eigenfrequency differences) is about 0.3 in the same units (see section 2). To summarize:

• Near the gaps due to resonances between acoustic and optic modes the sound mode can
no longer be described as a single excitation.

• Large broadening of the acoustic phonon modes is related to the three-wave mechanism.
• There are at least two main reasons why three-phonon processes lead to much more

noticeable contributions to sound absorption in QCs (more precisely in systems with non-
simple unit cells) in comparison with conventional crystals. First for the QC there is a
dense set of umklapp vectors, and second there are almost dispersionless optic modes
possessing finite widths, and a large phase volume in reciprocal space is available for
acoustic phonons interacting with the optical modes.

• The very existence of several quiet broad optical modes in QCs can be understood as an
illustration that in QCs there are many ways in which the neighbouring configurations can
be arranged; as a result a single mode, which initially was the same for all configurations,
becomes a band of the modes.

• This noticeable broadening might be a reason why no forbidden gaps have been observed
experimentally.

A few more words on umklapp processes seem appropriate here. The total momentum of any
set of interacting particles in a periodic crystal needs only be conserved to within a wavevector
from the reciprocal lattice, and these umklapp processes open further scattering channels where
the momentum of the particles in the initial state is different from that of the final state. In a QC
its reciprocal space contains all the necessary wavevectors to match any required frequency
conversion processes. However, this striking fact is almost irrelevant for linear, i.e., one-mode,
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Figure 9. Vibrational mode broadenings for the N = 5 approximant. The mass ratio is 1:2.81 and
the coupling parameter is g = 0.005.

phenomena. Evidently it is not the case for non-linear processes, like three-wave interaction,
which can be enhanced noticeably in quasi-periodic systems.

4.2. Refinement of the basic model

The results presented in the previous subsection can be extended in many ways. First, for
the sake of a sceptical reader we have to admit that strictly speaking our calculations are not
self-consistent ones. Indeed in our approach (4.2) (see also (A.1) in appendix A) we have
taken into account only three-wave processes which are not forbidden in the zero-temperature
limit. In other words this means that there is no bare phonon mode broadening. For finite
temperatures and non-zero bare phonon decay, the other processes could be also relevant, and
the most important processes are 1 + 1 ↔ 1, because the spectrum of acoustic phonons is
approximately linear for small wavevectors, which always allows three-phonon interactions.
Therefore in the case of finite temperatures, we have to add the contributions corresponding
to these 1 + 1 ↔ 1 processes into the right-hand side (rhs) of the first equation (4.2) or for
the five-particle elementary cell into the rhs of (A.1). We present in figure 9 the phonon
broadening with such a contribution taken into account for the coupling vertex g = 0.005.
A nice feature of this contribution is that the shape of the acoustic branch width turns out to
be almost independent of g for the interaction constant g larger than the threshold, which is
about 0.005; see figure 10. One note of caution is in order here. In the previous subsection we
replaced the Bose distribution function (exp(h̄ω/T ) − 1)−1 by the classical occupation factor
T h̄/ω. Luckily the acoustic branch broadening keeps its shape depicted in the figure 10 up
to a temperature larger than the maximum phonon energy in the acoustic branch. Thus our
approximation holds as well in a quite broad range of temperatures.

This universal contribution into the acoustic mode broadening can also be analysed
analytically, and it illustrates several characteristic features of the phenomenon. We believe
that the phonon width is significantly smaller than its frequency. To simplify this consideration
we assume also that the widths of the optical modes do not depend on ω or k. Experimental
data and our numerical investigations show that optical phonon widths indeed only very weakly
depend on the wavevectors. Replacing in the first equation in (A.1) ω1(k) ∼ c|k|, where c is
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Figure 10. Acoustic mode broadening for the N = 5 approximant. The mass ratio is 1:2.81 and
the coupling parameter values are indicated in the figure.

the speed of sound, and assuming that the width γ is small in comparison with the frequency
ω, we face solving the integral equation

γ1(k) = k2

(
c2 + c1

∫ 1

0
dq

γ1(q) + γ1(q + k)

c2(|k| + |q| − |k + q|)2 + (γ1(q) + γ1(q + k))2

)

= k2

(
c2 + c1

∫ 1

0
dq

1

γ1(q) + γ1(q + k)

)
, (4.3)

where c1 and c2 are numerical coefficients. The form of the solution to equation (4.3) can be
found straightforwardly and it reads

γ1(k) � c1k + c2k2. (4.4)

The approximate equality in (4.4) is obtained after the first iteration in (4.3). Thus we end up
with the following universal analytical form for the acoustic mode width: γ1(k) = c1k + c2k2.
This simple expression fits very well the function γ1(k) computed numerically (see figure 11).
In order to provide a more complete account of the vibrational broadening phenomena,a similar
analysis has been performed to include self-consistently the potentially relevant processes
n ↔ n + 1 (n is the vibrational branch number, and n = 1 corresponds to the acoustic
mode). We closely follow the same procedure as above for the 1 ↔ 1 + 1 broadening and thus
skipping all details present only the results in figure 12. It turns out that these new processes
have little effect on the acoustic branch width, and the broadenings of all other branches only
weakly depend on the wavevector and increase monotonically with the branch number. The
result justifies the assumptions made above, and proves that our model includes all ingredients
necessary to capture the correct broadening effects in the Fibonacci chain for T > TD.

4.3. Self-consistent expansion over the parameter ε = 1 − 1/m

We investigated the Fibonacci lattice based on the golden ratio as an example of the quasi-
periodic 1D systems. To confront our results with experimental data for well-studied i-QCs
we have taken the mass ratio to be m = 3. There are many other non-periodic structures which
are nonetheless fully deterministic and in this sense highly ordered. Qualitatively one can
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Figure 11. Numerically computed acoustic mode broadening for the N = 5 approximant and its
theoretical fit by (4.3).

Figure 12. Vibrational mode broadenings with the processes n ↔ n + 1 taken into account (N = 5
approximant and for the mass ratio 1:2.81).

also expect the same behaviour in 1D incommensurate systems. With this remark in mind it
is interesting and instructive to extend the analysis of the previous section to a quasi-periodic
system with the mass ratio m chosen to make use of the smallness of the parameter ε = 1−1/m.
If this assumption is granted we can apply a regular expansion over the small ε which allows
us to study even the infinite chain.

To move further on smoothly let us recall the characteristic features of the Fourier spectrum
for a periodically repeated finite Fibonacci block (remember that the length of the elementary
cell is a Fibonacci number also). According to the Nyquist theorem (see, e.g., [29]) for N
particles in the elementary cell one can determine only N/2 independent Fourier harmonics.
The absolute value of each Fourier amplitude is an even function of its wavenumber. The zero
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wavenumber harmonic has the largest amplitude. The next largest amplitude harmonics have
numbers N1 and N − N1, with the ratio N1/N close to the golden ratio N1/N ∼ 0.62. The
next (by their amplitudes) harmonics have the wavenumbers N2 ∼ 0.62N1 and so on. For
example, for N = 21 the wavenumbers of the highest harmonics are 0, 8, 5, . . .. Evidently
the amplitudes of all harmonics with non-zero wavenumbers are proportional to the small
parameter ε; the corresponding proportionality coefficients are approximately constant and
the constant is smaller than one. The amplitude ratio of the different harmonics is independent
of the small parameter ε, and for the first two main harmonics (except the zero harmonic) this
ratio is about 0.38.

Armed with this knowledge we can consider the phonon spectrum of such a system. For
N particles in the elementary cell we get the spectrum with one acoustic and N − 1 optical
branches. The gaps between the branches are determined by the amplitudes of corresponding
Fourier harmonics. The amplitude of the harmonic, say, with the wavenumber K determines
two spectral gaps with the numbers K and N − K respectively. Noting that the sum of these
two gaps is approximately equal to the amplitude of this harmonic, we arrive at the conclusion
that the vibrational spectrum of the Fibonacci chain possesses the sequence of the gaps, and
the value of the gap depends on its wavenumber and on the parameter ε. In the limit ε → 0
all gaps also tend to zero. The chain turns into the crystalline Bravais lattice with only one
particle in its elementary cell and only one acoustic phonon branch. For finite but small values
of the parameter ε the difference between the phonon spectra of the quasi-periodic system
under consideration and the corresponding Bravais lattice should be also small. To be more
specific let us focus on the simplest non-Bravais system with three particles in the elementary
cell. The main feature of this non-Bravais lattice is that the length of the Brillouin zone is three
times smaller than for its Bravais counterpart, and besides there are two additional non-zero
Fourier harmonics. The acoustic branch of the non-Bravais lattice practically coincides with
the corresponding part (one third) of the acoustic branch of the Bravais lattice. However, the
optical branches in the non-Bravais lattice spectrum are significantly different. Let us denote
by q0 the size of the Brillouin zone for the Bravais lattice. For the optical modes we easily
get that ω2(k) ∼ ωB(2q0/3 − k) and ω3(k) ∼ ωB(k − 2q0/3), where ωB is the only phonon
frequency in the Bravais lattice. Three-wave interaction in the Bravais lattice is determined by
a certain vertex λ3, which is supposed to be not very different from the similar triple interaction
vertex between the acoustic phonons for the non-Bravais lattice. However, in the non-Bravais
case we have to consider also all other interactions which include the optical phonons. We
denote the corresponding vertex λ4a(qi), because it describes in fact the four-wave coupling,
and a(qi) is the Fourier amplitude of the density modulation at the wavevector qi . Actually
the vertex λ3 can also be reduced to λ4a(q0), and therefore the natural estimate for the vertices
is λ4a(qi)/λ3 ∼ a(q)/a(0) ∼ ε.

The number of wavevectors q entering the vibrational thermal broadening is equal to the
number of optical modes. Thus for our simple case with three particles in the elementary cell
we have to deal with two vectors, and their Fourier amplitudes are equal and proportional to
ε. Furthermore the effective triple vertex in the main over ε approximation including all not
forbidden processes can be written as

λeff = λ3δ(k1 + k2 + k3) +
∑

i

λ4a(qi)δ(k1 + k2 + k3 + qi).

Finally the thermal vibrational mode broadening is determined by the square of this vertex.
In a generic situation the different contributions into λeff do not interfere. Let us recall again
that this conclusion is based on our assumption of ε � 1, which is equivalent to saying that
the amplitudes a(qi), are small, and non-small Fourier harmonics are included in the basic
structure as we did above for the harmonic with the wavevector q0.
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Figure 13. Comparison of the spectra for the Bravais system and its non-Bravais counterpart (the
mass ratio is about 1:3): smooth line—the broadening in the 1D Bravais crystal; curve with the
jumps—the broadening in the system with three particles in the elementary cell with the same
interaction constant g as for the smooth line.

Now we can compare the thermal broadening for the Bravais and non-Bravais cases. The
only three-wave process allowed in the Bravais lattice is evidently 1 ↔ 1 + 1. For the non-
Bravais case we have besides it also the three-wave processes related to the interaction vertex
λ4a(qi). For our simplest case with three particles in the elementary cell a(q0/3) = a(2q0/3)

and both additional vertices coincide and are proportional to ε. One can see that the vibrational
broadening for the non-Bravais case always exceeds the broadening in its Bravais counterpart.
The corresponding difference of both widths γ3 − γB is proportional to the value

∑
i a(qi)

2

(for the sake of simplicity we consider λ4 to be a constant). We present the results in figure 13
for λ3 = 0.05 and λ4 = 0.66λ3 (ε ∼ 2/3). The qualitative inescapable message of this is that
the phonon broadening is always larger for a non-simple elementary cell in comparison to the
corresponding simple Bravais elementary cell.

5. Conclusion

We have examined one important (and overlooked in previous investigations) aspect of QC
vibration spectra, namely, three-wave anharmonic line broadening. Our model chain is
constructed from particles with masses 1 and m following the Fibonacci inflation rule. As
the length of the pattern goes to infinity, the ratio between the total number of elements of
different components approaches a constant value. The eigenmode spectrum depends crucially
on the mass ratio m. For m = 3, which roughly mimics i-QC AlPdMn, there are three almost
dispersionless optic modes separated from the acoustic mode by three large gaps. For m = 1/3,
which mimics ZnMgY i -QCs, there is one dispersionless optic mode and one acoustic mode.
All calculations are performed self-consistently at finite temperatures T > TD within the
regular expansion over the three-wave coupling constant. We have demonstrated that this
problem can be treated as well in the framework of the perturbation theory over the parameter
1 − 1/m, which may be formally considered as a small parameter. We have found noticeable
three-wave anharmonic contributions into the mode broadening. At a given mass ratio m
the broadening depends on the mode coupling constant, and for relatively strong coupling, is
proportional to k3, where k is the mode wavevector. The need of an exponent smaller than 4
(which is often attributed to Rayleigh scattering in disordered materials [8, 9]) of the power law
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k-dependent broadening was indicated also in [20] in order to fit the thermoconductivity data
in AlMnPd i-QC. We have shown that the line broadening dependence on mode wavevector is
not a universal one. For a coupling parameter higher than g = 0.005 the exponent of the power
law of the acoustic mode width becomes smaller than 3, and for very small coupling this kind
of power-law fitting becomes inadequate. We have demonstrated that robust features of the
vibrational spectra of 1D Fibonacci chain will carry over to 2D and 3D cases by extending our
approach into 3D systems. We have shown that in the intermediate range of mode coupling
constants, three-wave broadening depends universally on frequencyω and scales as c1ω+c2ω

2,
where c1 and c2 are constants.

It is instructive to compare these predictions with the results known for standard (i.e.,
possessing simple Bravais unit cells) crystalline materials, where the inelastic anharmonic
processes lead to a temperature-dependent linewidth which scales as k2, whereas elastic
scattering of the Bloch-like waves by the static inhomogeneities leads to a temperature-
independent linewidth proportional to k4 in 3D systems. Our important qualitative conclusion
is that for a system with a non-simple elementary cell phonon spectrum broadening is always
larger than that for a system with a primitive cell, provided all other characteristics are the
same.

Although our model is a toy model in the sense of caricaturing some of the physical
features of quasicrystals, it is capable of providing both qualitative and quantitative predictions
for a variety of measured quantities, and establishes the properties of the vibrational spectra
associated with generic features of any system with a non-simple unit cell.
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Appendix A

The system of equations for phonon line broadening in the five-particle approximant to the
infinite Fibonacci chain reads

γ1(k, ω1) = gω1(k)

∫
dk ′

(
(ω2(k + k ′) − ω1(k ′))(γ1(k ′) + γ2(k + k ′))

(ω1(k) + ω1(k ′) − ω2(k + k ′))2 + (γ1(k ′) + γ2(k + k ′))2

+
(ω4(k + k ′) − ω3(k ′))(γ3(k ′) + γ4(k + k ′))

(ω1(k) + ω3(k ′) − ω4(k + k ′))2 + (γ3(k ′) + γ4(k + k ′))2

+
(ω5(k + k ′) − ω4(k ′))(γ4(k ′) + γ5(k + k ′))

(ω1(k) + ω4(k ′) − ω5(k + k ′))2 + (γ4(k ′) + γ5(k + k ′))2

)

γ2(k, ω2) = gω2(k)

∫
dk ′

(
ω1(k ′)(γ1(k ′) + γ1(k − k ′))

(ω2(k) − ω1(k ′) − ω1(k − k ′))2 + (γ1(k ′) + γ1(k − k ′))2

+
(ω3(k + k ′) − ω2(k ′))(γ2(k ′) + γ3(k + k ′))

(ω2(k) + ω2(k ′) − ω3(k + k ′))2 + (γ2(k ′) + γ3(k + k ′))2

+
(ω5(k + k ′) − ω3(k ′))(γ3(k ′) + γ5(k + k ′))

(ω2(k) + ω3(k ′) − ω5(k + k ′))2 + (γ3(k ′) + γ5(k + k ′))2

)
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γ3(k, ω3) = gω3(k)

∫
dk ′

(
ω2(k ′)(γ2(k ′) + γ2(k − k ′))

(ω3(k) − ω2(k ′) − ω2(k − k ′))2 + (γ2(k ′) + γ2(k − k ′))2
(A.1)

+
(ω4(k + k ′) − ω1(k ′))(γ1(k ′) + γ4(k + k ′))

(ω3(k) + ω1(k ′) − ω4(k + k ′))2 + (γ1(k ′) + γ4(k + k ′))2

+
(ω5(k + k ′) − ω2(k ′))(γ2(k ′) + γ5(k + k ′))

(ω3(k) + ω2(k ′) − ω5(k + k ′))2 + (γ2(k ′) + γ5(k + k ′))2

)

γ4(k, ω4) = gω4(k)

∫
dk ′

(
(ω1(k ′) + ω3(k − k ′))(γ1(k ′) + γ3(k − k ′))

(ω4(k) − ω1(k ′) − ω3(k − k ′))2 + (γ1(k ′) + γ3(k − k ′))2

+
(ω5(k + k ′) − ω1(k ′))(γ1(k ′) + γ5(k + k ′))

(ω4(k) + ω1(k ′) − ω5(k + k ′))2 + (γ1(k ′) + γ5(k + k ′))2

)

γ5(k, ω5) = gω5(k)

∫
dk ′

(
(ω1(k ′) + ω4(k − k ′))(γ1(k ′) + γ4(k − k ′))

(ω5(k) − ω1(k ′) − ω4(k − k ′))2 + (γ1(k ′) + γ4(k − k ′))2

+
(ω2(k ′) + ω3(k − k ′))(γ2(k ′) + γ3(k − k ′))

(ω5(k) − ω2(k ′) − ω3(k − k ′))2 + (γ2(k ′) + γ3(k − k ′))2

)
.

Here only the main three-wave processes 1 + 1 ↔ 2, 2 + 2 ↔ 3, 1 + 3 ↔ 4, 1 + 4 ↔ 5,
2 + 3 ↔ 5 are taken into account and, besides, we assume classical statistics for the vibrational
excitations. The self-consistent solution to these equations, shown in figure 8 for the mass ratio
1:2.81 and parameter g = 0.005, qualitatively resembles experimentally observed spectra.
Note, however, that the line broadening dependence on wavevectors turns out to be not a
universal one. The acoustic mode width for the non-linear coupling parameter g = 0.005 can
be fitted by the power law ω ∝ k3, but for higher values of g the exponent in this power law
decreases, and for very small coupling power-law fitting is not possible anymore.

Appendix B

The main problem to treat theoretically mode broadening in 3D quasicrystals is related to the
fact that there is no well-defined Brillouin zone. Luckily, for finite temperature three-wave
line broadening, the integrals entering the expression for the broadening only weakly depend
on the region in the vicinity of the boundary of the pseudo-Brillouin zone. Having in mind
highly symmetric elastic properties of the i-QCs, one can perform this integration over an
appropriate chosen spherical volume. Indeed, despite (at least partially) contradictory results
of experimental investigations [3, 7], and [25] a few conclusions about the following qualitative
features of the phonon broadening in 3D systems seem inescapable:

• sound velocity is approximately isotropic;
• the broadening for wavevectors 0.3–0.5 A−1 is also isotropic;
• phonon lines have almost Lorentzian shapes.

Note also that the icosahedron and inverse dodecahedron (the main building blocks for any
i-QCs) are the most isotropic perfect polyhedra. The broadening due to the three-phonon
interactions is determined by the integral which has singularity along the line corresponding to
the zero angle between the wavevectors. All these features mean that the approximation which
replaces the first Brillouin zone by a sphere is a quite reasonable one. Having this in mind,
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Figure B.1. Phonon spectrum for the 3D isotropic model of i-QCs with three acoustic branches
and three optical branches (transverse modes are degenerate).

Figure B.2. The broadening of the phonons for the same model as in figure B.1, and for γ/ω ∼ 0.16.

we calculate the broadening for the simplest case of an isotropic system with the reciprocal
q-space limited by the sphere |q| = q0 and with only a one-phonon branch

γ (q) = gω(q)2
∫ q0

0
dk k2

∫ 1

−1
dt

(
(γ (k) + γ (q − k))/2

(ω(q) − ω(k) − ω(q − k))2 + (γ (k) + γ (q − k))2

+
γ (k) + γ (q + k)

(ω(q) + ω(k) − ω(q + k))2 + (γ (k) + γ (q + k))2

)
. (B.1)

Because everything is isotropic for this case, one has γ (k) = γ (k) and γ (q ± k) =
γ (

√
q2 + k2 ∓ 2qk cos k̂q). The integration above is performed over the region |k| < q0.

Thus we choose q < q0, and if |q ± k| occurs to be larger than q0, it must be replaced with
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2q0−|q±k|. The first term in the rhs corresponds to the decay of a phonon with the wavevector
q, the second term describes the fusion of this phonon with the phonon with the wavevector
k, and to be specific the phonon spectrum is taken as ω(q) = ω0 sin(

πq
2q0

). The generalization
for a larger number of particles in the elementary cell is straightforward. In the case of two
particles, the phonon spectrum consists of three acoustic and three optic branches, and due
to the isotropy of the system the transverse branches should be degenerate. The solution
to the corresponding equations can be found as above. The results for the eigenfrequencies
are presented in figure B.1 and for the vibrational mode broadenings in figure B.2. Maximal
frequencies for longitudinal acoustic and optic modes are 0.81 and 1.4 correspondingly, i.e., the
ratio γ /ω(k = 1) ∼ 1/7, i.e., quite close to the neutron scattering experimental data [5–7]. The
robust qualitative features of the broadening for both the longitudinal and transverse acoustic
branches are very similar ones, and can be fitted as c1k + c2k2. This answer is universal for
the model, when the broadening is determined by only one three-wave interaction constant g.
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[9] Rufflé B, Foret M, Courtens E, Vacher R and Monaco G 2003 Phys. Rev. Lett. 90 095502

[10] Hafner J and Krajci M 1993 J. Phys.: Condens. Matter 5 2489
[11] Hafner J, Krajci M and Michalkovic M 1996 Phys. Rev. Lett. 76 2738
[12] Niizeki K 1989 J. Phys. A: Math. Gen. 22 4295
[13] Niizeki K and Akamatsu T 1990 J. Phys.: Condens. Matter 2 2759
[14] Janot C 1996 Phys. Rev. B 53 181
[15] Quilichini M and Janssen T 1997 Rev. Mod. Phys. 69 277
[16] Janssen T 2000 Ferroelectrics 236 157
[17] Levine D, Lubensky T C, Ostlund S, Ramaswamy S and Steinhard P J 1985 Phys. Rev. Lett. 54 1520
[18] Lubensky T C, Ramaswamy S and Toner J 1985 Phys. Rev. B 32 7444
[19] Lu J P, Odugaki T and Birman J L 1986 Phys. Rev. B 33 4809
[20] Kalugin P A, Chernikov M A, Bianchi A and Ott H R 1996 Phys. Rev. B. 53 1445
[21] Kramer P and Neri R 1984 Acta Crystallogr. A 40 580
[22] Roche S and Mayou D 1997 Phys. Rev. Lett. 79 2518
[23] Roche S, Bicout D, Macia E and Kats E 2003 Phys. Rev. Lett. 91 228101
[24] Landau L D and Lifshits E M 1981 Physical Kinetics, Course of Theoretical Physics vol 10 (New York:

Pergamon)
[25] Swenson C A, Fisher I R, Anderson N E Jr, Canfield P C and Migliori A 2002 Phys. Rev. B 65 184206
[26] Swenson C A, Lograsso T A, Ross A R and Anderson N E Jr 2002 Phys. Rev. B 66 184206
[27] Chernikov M A, Ott H R, Bianchi A, Migliori A and Darling T W 1998 Phys. Rev. Lett. 80 321
[28] Gianno K, Sologubenko A V, Chernikov M A and Ott H R 2000 Phys. Rev. B 62 292
[29] Weaver H J 1983 Applications of Discrete and Continuous Fourier Analysis (New York: Wiley)

http://dx.doi.org/10.1088/0953-8984/5/28/010
http://dx.doi.org/10.1088/0953-8984/7/37/004
http://dx.doi.org/10.1007/s100510050640
http://dx.doi.org/10.1088/0953-8984/14/8/313
http://dx.doi.org/10.1088/0953-8984/15/11/346
http://dx.doi.org/10.1103/PhysRevLett.90.095502
http://dx.doi.org/10.1088/0953-8984/5/16/008
http://dx.doi.org/10.1103/PhysRevLett.76.2738
http://dx.doi.org/10.1088/0305-4470/22/20/010
http://dx.doi.org/10.1088/0953-8984/2/12/001
http://dx.doi.org/10.1103/PhysRevB.53.181
http://dx.doi.org/10.1103/RevModPhys.69.277
http://dx.doi.org/10.1103/PhysRevLett.54.1520
http://dx.doi.org/10.1103/PhysRevB.32.7444
http://dx.doi.org/10.1103/PhysRevB.33.4809
http://dx.doi.org/10.1103/PhysRevB.53.14145
http://dx.doi.org/10.1107/S0108767384001203
http://dx.doi.org/10.1103/PhysRevLett.79.2518
http://dx.doi.org/10.1103/PhysRevLett.91.228101
http://dx.doi.org/10.1103/PhysRevB.65.184206
http://dx.doi.org/10.1103/PhysRevB.66.184206
http://dx.doi.org/10.1103/PhysRevLett.80.321
http://dx.doi.org/10.1103/PhysRevB.62.292

	1. Introduction
	2. Fibonacci model
	3. Eigenfunctions
	4. Three wave broadening
	4.1. Basic model
	4.2. Refinement of the basic model
	4.3. Self-consistent expansion over the parameter epsilon =1– 1/ m

	5. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References

